23 research outputs found

    Conflict-Free Coloring of Intersection Graphs

    Get PDF
    A conflict-free k-coloring of a graph G=(V,E) assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v\u27s neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well studied in graph theory. Here we study the conflict-free coloring of geometric intersection graphs. We demonstrate that the intersection graph of n geometric objects without fatness properties and size restrictions may have conflict-free chromatic number in Omega(log n/log log n) and in Omega(sqrt{log n}) for disks or squares of different sizes; it is known for general graphs that the worst case is in Theta(log^2 n). For unit-disk intersection graphs, we prove that it is NP-complete to decide the existence of a conflict-free coloring with one color; we also show that six colors always suffice, using an algorithm that colors unit disk graphs of restricted height with two colors. We conjecture that four colors are sufficient, which we prove for unit squares instead of unit disks. For interval graphs, we establish a tight worst-case bound of two

    Packing Disks into Disks with Optimal Worst-Case Density

    Get PDF
    We provide a tight result for a fundamental problem arising from packing disks into a circular container: The critical density of packing disks in a disk is 0.5. This implies that any set of (not necessarily equal) disks of total area delta 0 there are sets of disks of area 1/2+epsilon that cannot be packed. The proof uses a careful manual analysis, complemented by a minor automatic part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms

    Worst-Case Optimal Covering of Rectangles by Disks

    Get PDF
    We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any λ≥1\lambda\geq 1, the critical covering area A∗(λ)A^*(\lambda) is the minimum value for which any set of disks with total area at least A∗(λ)A^*(\lambda) can cover a rectangle of dimensions λ×1\lambda\times 1. We show that there is a threshold value λ2=7/2−1/4≈1.035797…\lambda_2 = \sqrt{\sqrt{7}/2 - 1/4} \approx 1.035797\ldots, such that for λ<λ2\lambda<\lambda_2 the critical covering area A∗(λ)A^*(\lambda) is A∗(λ)=3π(λ216+532+9256λ2)A^*(\lambda)=3\pi\left(\frac{\lambda^2}{16} +\frac{5}{32} + \frac{9}{256\lambda^2}\right), and for λ≥λ2\lambda\geq \lambda_2, the critical area is A∗(λ)=π(λ2+2)/4A^*(\lambda)=\pi(\lambda^2+2)/4; these values are tight. For the special case λ=1\lambda=1, i.e., for covering a unit square, the critical covering area is 195π256≈2.39301…\frac{195\pi}{256}\approx 2.39301\ldots. The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.Comment: 45 pages, 26 figures. Full version of an extended abstract with the same title accepted for publication in the proceedings of the 36th Symposium on Computational Geometry (SoCG 2020

    Connected Coordinated Motion Planning with Bounded Stretch

    Get PDF
    We consider the problem of coordinated motion planning for a swarm of simple, identical robots: From a given start grid configuration of robots, we need to reach a desired target configuration via a sequence of parallel, continuous, collision-free robot motions, such that the set of robots induces a connected grid graph at all integer times. The objective is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in a minimum amount of time. We show that this problem is NP-hard, even for deciding whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved. On the algorithmic side, we establish simultaneous constant-factor approximation for two fundamental parameters, by achieving constant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of a given object by the same multiplicative factor) have been considered in previous seminal work on self-assembly, often with unbounded or logarithmic scale factors; we provide methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm achieves a constant stretch factor: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of d, then the total duration of our overall schedule is ?(d), which is optimal up to constant factors

    Coordinated Motion Planning: Reconfiguring a Swarm of Labeled Robots with Bounded Stretch

    Get PDF
    We present a number of breakthroughs for coordinated motion planning, in which the objective is to reconfigure a swarm of labeled convex objects by a combination of parallel, continuous, collision-free translations into a given target arrangement. Problems of this type can be traced back to the classic work of Schwartz and Sharir (1983), who gave a method for deciding the existence of a coordinated motion for a set of disks between obstacles; their approach is polynomial in the complexity of the obstacles, but exponential in the number of disks. Despite a broad range of other non-trivial results for multi-object motion planning, previous work has largely focused on sequential schedules, in which one robot moves at a time, with objectives such as the number of moves; attempts to minimize the overall makespan of a coordinated parallel motion schedule (with many robots moving simultaneously) have defied all attempts at establishing the complexity in the absence of obstacles, as well as the existence of efficient approximation methods. We resolve these open problems by developing a framework that provides constant-factor approximation algorithms for minimizing the execution time of a coordinated, parallel motion plan for a swarm of robots in the absence of obstacles, provided their arrangement entails some amount of separability. In fact, our algorithm achieves constant stretch factor: If all robots want to move at most d units from their respective starting positions, then the total duration of the overall schedule (and hence the distance traveled by each robot) is O(d). Various extensions include unlabeled robots and different classes of robots. We also resolve the complexity of finding a reconfiguration plan with minimal execution time by proving that this is NP-hard, even for a grid arrangement without any stationary obstacles. On the other hand, we show that for densely packed disks that cannot be well separated, a stretch factor Omega(N^{1/4}) may be required. On the positive side, we establish a stretch factor of O(N^{1/2}) even in this case. The intricate difficulties of computing precise optimal solutions are demonstrated by the seemingly simple case of just two disks, which is shown to be excruciatingly difficult to solve to optimality

    Conflict-Free Coloring of Planar Graphs

    Get PDF
    A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v's neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.Comment: 30 pages, 17 figures; full version (to appear in SIAM Journal on Discrete Mathematics) of extended abstract that appears in Proceeedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 1951-196

    Packing Squares into a Disk with Optimal Worst-Case Density

    Get PDF
    We provide a tight result for a fundamental problem arising from packing squares into a circular container: The critical density of packing squares into a disk is ? = 8/(5?)? 0.509. This implies that any set of (not necessarily equal) squares of total area A ? 8/5 can always be packed into a disk with radius 1; in contrast, for any ? > 0 there are sets of squares of total area 8/5+? that cannot be packed, even if squares may be rotated. This settles the last (and arguably, most elusive) case of packing circular or square objects into a circular or square container: The critical densities for squares in a square (1/2), circles in a square (?/(3+2?2) ? 0.539) and circles in a circle (1/2) have already been established, making use of recursive subdivisions of a square container into pieces bounded by straight lines, or the ability to use recursive arguments based on similarity of objects and container; neither of these approaches can be applied when packing squares into a circular container. Our proof uses a careful manual analysis, complemented by a computer-assisted part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms. At the same time, our approach showcases the power of a general framework for computer-assisted proofs, based on interval arithmetic

    Connected Coordinated Motion Planning with Bounded Stretch

    Full text link
    We consider the problem of connected coordinated motion planning for a large collective of simple, identical robots: From a given start grid configuration of robots, we need to reach a desired target configuration via a sequence of parallel, collision-free robot motions, such that the set of robots induces a connected grid graph at all integer times. The objective is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in a minimum amount of time. We show that this problem is NP-complete, even for deciding whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved. On the algorithmic side, we establish simultaneous constant-factor approximation for two fundamental parameters, by achieving constant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of a given object by the same multiplicative factor) have been considered in previous seminal work on self-assembly, often with unbounded or logarithmic scale factors; we provide methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm achieves a constant stretch factor: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of dd, then the total duration of our overall schedule is O(d)\mathcal{O}(d), which is optimal up to constant factors.Comment: 28 pages, 18 figures, full version of an extended abstract that appeared in the proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC 2021); revised version (more details added, and typing errors corrected
    corecore